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GRAPHICAL ABSTRACT

Uplifting the Complexity of Analysis for Probabilistic Security of Electricity
Supply Assessments using Artificial Neural Networks (ANN)

Problem and solution approach

J. Miinch et al. (2024)
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ABSTRACT

The energy sector faces rapid decarbonisation and decision-makers demand reliable assessments of the security
of electricity supply. For this, detailed simulation models with a high temporal and technological resolution are
required. When confronted with increasing weather-dependent renewable energy generation, probabilistic
simulation models have proven. The significant computational costs of calculating a scenario, however, limit the
complexity of further analysis. Advances in code optimization as well as the use of computing clusters still lead to
runtimes of up to eight hours per scenario. However ongoing research highlights that tailor-made approxima-
tions are potentially the key factor in further reducing computing time. Consequently, current research aims to
provide a method for the rapid prediction of widely varying scenarios. In this work artificial neural networks
(ANN) are trained and compared to approximate the system behavior of the probabilistic simulation model. To
do so, information needs to be sampled from the probabilistic simulation in an efficient way. Because only a
limited space in the whole design space of the 16 independent variables is of interest, a classification is devel-
oped. Finally it required only around 35 min to create the regression models, including sampling the design
space, simulating the training data and training the ANNs. The resulting ANNs are able to predict all scenarios
within the validity range of the regression model with a coefficient of determination of over 0.9998 for inde-
pendent test data (1.051.200 data points). They need only a few milliseconds to predict one scenario, enabling in-
depth analysis in a brief period of time.
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J. Miinch et al.
1. Introduction

Against the background of the shutdown of conventional power
plants and the current energy shortage, the assessment of the security of
electricity supply in Germany and other European countries is becoming
increasingly important. In order to reduce CO, emissions, the German
government has created the legal basis for shutting down all hard coal
and lignite-fired power plants by the end of 2038 at the latest with the
"Act to Reduce and End Coal-fired Power Generation" [1], thus following
the energy policy recommendation of the Commission on "Growth,
Structural Change and Employment" [2]. Furthermore, as a direct re-
action to the nuclear disaster in Fukushima Daiichi, it was decided in
2011 to shut down all existing nuclear power plants by 2023 [3]. In the
course of the energy crisis and the resulting switch from pipeline gas to
liquefied natural gas from various supply sources, an amendment to the
law for a temporary extension of the operating lives of nuclear power
plants was passed by the German parliament [4]. This decision was
justified by concerns regarding security of electricity. Without a reliable
gas supply, this problem will continue to exist in the future. Also, in
particular due to the increasing importance of gas supply as the last
conventional energie source in electricity generation in the future with a
share of 33.3% in 2022 [5] and at the same time as an important
component in heat supply with a share of 66.2% in 2021 (Federal Sta-
tistical Office, 2021).

Reduced capacities of controllable conventional power plants and
growing shares of intermittent feed-in of renewable energies with low
storage capacities can lead to a higher probability of situations in which
there is a energy supply shortfall. This means that the electricity supply
is not sufficient to cover the load, and this can lead to load-shedding
measures [6]. Currently, Germany has a high level of security of sup-
ply and in recent years there have been only a few interruptions to the
electricity supply due to grid instabilities. The annual interruption
duration per customer in Germany, the so-called System Average
Interruption Duration Index (SAIDI), averaged only 14.8 min between
2006 and 2021 and reached a maximum of 21.5 min [7]. However, this
situation could change in the future due to the abovementioned changes
in the German/European electricity system. According to the report
“Power Supply Security” [8], security of supply in the period from 2025
to 2031 is ensured, even if coal is completely phased out by 2030.
However, it also accentuate that a number of developments on the
generation and grid side must be implemented as well as the importance
of an ongoing assessment of future security of supply. As can be inferred
from the foregoing, system analyses that map the uncertainties of future
developments are of particular importance for independent scientific
advice to decision-makers in politics and industry. This requires
high-resolution probabilistic simulation models that are capable of
mapping the probability distribution of the available power plants for a
large number of scenarios to be investigated. The calculation of these
probability distributions is very computationally intensive and is,
therefore, associated with long runtimes. The computing times were
reduced with advances in code optimization and the use of computing
clusters, but still require up to 8 h of computing time per scenario. Due to
these long computing times, in-depth analyses, which require the
consideration of a large number of scenarios, cannot be carried out in a
reasonable time. This often leads either to a reduction in the depth of
analysis or to a reduction in the complexity of the simulation model so
that results can be achieved within a reasonable period of time. The aim
of current research is to overcome this necessary trade-off between
depth of analysis, complexity of the simulation model and duration of
the analysis using modern methods from the field of machine learning
(ML).

The first work in the field of ML dates back to the middle of the 20th
century. However, especially in recent years, the use of ML methods in
all disciplines has increased significantly due to the improved perfor-
mance and accessibility of alogrithms, computing hardware and data
storage (big data era) [9]. In the review article “Machine Learning:
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Algorithms, Real-World Applications and Research Directions”, the au-
thors provide a comprehensive overview of ML methods for data anal-
ysis and applications in the context of the fourth industrial revolution
(4IR or Industry 4.0), digitalization and data such as the Internet of
Things (IoT), i.e. cybersecurity data, mobile data, business data, social
media data, health data, etc. [10]. The authors discuss how different ML
methods can be applied to real-world problems. ML methods are already
being successfully applied to many real-world engineering problems.
For example, in the paper “A Survey of Machine Learning-Based System
Performance Optimization Techniques” [11], the authors review ap-
proaches to system performance optimization based on ML methods.
The authors come to the conclusion that the use of ML methods is
promising and has considerable potential. In the field of energy tech-
nology, there are also numerous studies that demonstrate the benefits of
ML methods and, in particular, artificial neural networks. In the review
article “A comprehensive review of machine learning and IoT solutions
for demand side energy management, conservation, and resilient oper-
ation” [12], the authors provide an overview of current research efforts
to apply ML strategies to energy conservation and management prob-
lems, as well as discuss ML approaches and strategies for energy tech-
nologies, control methods, conservation and management problems,
among other topics. Furthermore, ANNs have already been applied in
the field of carbon capture technology using monoethanolamine to
model CO; capture levels [13]. In another application, an Al-based
modelling and optimization system based on ANNs was developed to
enhance the performance of coal-fired power plants [14]. A further work
is concerned with the improvement of the isentropic efficiency of a
high-pressure steam turbine using ANN for modeling [15]. To improve
the representation of cross-border exchange capacities defined by the
flow-based approach in European resource adequacy assessments,
another work proposes a supervised learning-based approach. This im-
proves the mapping between several relevant explanatory variables and
the pre-clustered flow-based domains [16]. This is just a very small view
into the large research field of machine learning, but all these and other
current works demonstrate the high benefit and potential of ML ap-
proaches that have been specifically adapted to the problem.

In our previous paper "Can energy system modeling benefit from
artificial neural networks? Application of two-stage metamodels to
reduce computation of security of supply assessments" [17] we focus on
the problem of high computing times of probabilistic security of elec-
tricity supply assessments and present a first approach to metamodeling
the probabilistic simulation. Here, the benefit of metamodeling was
already shown by a significant reduction of the simulation time by 99.7
% with a high prediction quality. However, the probabilistic simulation
model could not be completely metamodeled with this approach. This
means that the target variables Lost of Load Probability (LOLP), Loss of
Load Expectation (LOLE) and Expected Energy Not Severed (EENS) cannot
be predicted directly, only the computationally intensive calculation of
the hourly resolved probability distributions. These correspond to sig-
moid functions, so that the parameters of the sigmoid functions were
predicted, and the target variables were then determined from these. In
addition, the dimensionality of the problem had to be reduced so that
only the conventional power plant park (4 dimensions) could be used as
input variables for the metamodeling. This approach is extended in this
work so that a direct approximation of the target variables by meta-
modeling is possible under all relevant input variables, i.e.
weather-dependent renewable power plant park, conventional power
plant park, planned and unplanned unavailability etc. (16 dimensions).
Comprehensive metamodeling of the probabilistic simulation model will
significantly accelerate the implementation of analysis methods that
require a large number of different scenarios for the input variables.

1.1. Our research questions are as follows

1. Can artificial neural networks predict the key indicators of security of
electricity supply assessments by considering all influencing input
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variables, which are simulated using a probabilistic simulation
model?

. How can the design space of the probabilistic simulation be scanned
as effectively as possible if a target value is limited between values of
0and 1?

. What are the runtime gains on the one hand and accuracy losses on
the other hand compared to the native simulation?

. Can the methodology enable in-depth analyses to be performed in a
reasonable time?

The rest of the paper is structured as follows: Section 2 presents the
simulation model used for the security of supply assessment in more
detail. Section 3 describes the methods used to increase the depth of
analysis. Methods for generating the data set for training the neural
network are presented. Section 4 describes the input data and scenarios
for assessing the security of supply. Section 5 shows our results and
provides discussions with regards to both, runtime accelerations and
accuracy losses. Finally, we provide a conclusion and outlook for
possible future research in Section 6.

2. Description of the simulation model

The JERICHO security of supply model is a Python-based simulation
model to assess the security of electricity supply. The model has been
developed by [18]. A schematic overview of the JERICHO security of
supply model is depicted in Fig. 1.

The probabilistic model takes into account stochastic fluctuations of
both renewable feed-in and electricity demand, volatile availability of
power plant capacities as well as import potentials from neighboring
countries. Hourly simulations for 30 different weather years are per-
formed to represent the stochasticity of weather influences. Recursive
convolution is used to aggregate the availabilities of all installed con-
ventional power plant units to one distribution curve. Each conventional
power plant unit has two possible states: non-availability
pnon—availability(t)s or Complete availability a- pnon—availability(t)) and
therefore follows a discrete Bernoulli distribution. In this context, the
probability of the non-availability of a power plant unit consists of
planned and unplanned unavailability. In the event of planned un-
availability, the outage start and duration are determined at least four
weeks before its occurrence. For unplanned unavailability, the lead time
is shorter. The number of conventional power plant units in the German
power plant portfolio has a direct influence on the computational effort

Input data
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of the model. For the number n of block units, the possible states grow
exponentially with 2". Due to the hourly resolution, 8760 h are calcu-
lated and aggregated per simulation year. Thus, recursive convolution is
a computationally intensive algorithm that requires several hours of
computing time even with a parallelized code on computing clusters.

3. Metamodeling to reduce computational effort

In this section, the method for accelerating the generation of results
to increase the depth of analysis of the JERICHO security of supply
model is explained in more detail. First, the method of metamodeling is
presented. Subsequently, the problem statement at hand is explained.
Based on this, solutions for effective sampling of the design space and
thus for generating data for approximating the underlying simulation
are presented.

3.1. Methodology of metamodeling

Metamodeling is a possibility to enable in-depth analysis for complex
simulation models when direct use of simulation models is limited due to
high computational effort. Metamodels are used to represent the system
behavior of the simulation model using regression methods by estab-
lishing a relationship between the input and output data. Once a met-
amodel has been successfully created, it is able to generate the output
variables of the simulation model with a strong time reduction through a
prognosis. A variety of regression methods can be used for metamodels,
achieving different accuracies depending on the present problem.
Several classical methods can be used (e.g. polynomial regression).
However, in most applications, simulations have a more complex
character. This often leads to nonlinear relationships between the input
and output data, which cannot be sufficiently approximated by classical
methods. In these cases, ML methods can be applied. Fig. 2 shows the
methodology schematically for the present problem security of supply
assessment with electricity.

Metamodels are generated from real simulation results and are valid
for a predefined design space. The design space represents a multidi-
mensional structure spanned by the input data of the simulation model
and includes the entire range of all input data combinations. The minima
and maxima of these input data define the boundaries of the design
space (see section 3.2). Built metamodels are able to predict each
response (output data) of each factor combination of the input data
within the design space. However, the prediction is limited to the design
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space in which the metamodel is valid. Fig. 3 demonstrates an example
of the design space for a three-dimensional problem.

When sampling the data used to create the metamodel, it is impor-
tant to ensure that the amount of information obtained is sufficient to
represent the system behavior. On the other hand, with the amount of
input data combinations rises the sampling respectively simulation time
to obtain the related output data. In order to scan the design space as
effectively as possible, a variety of statistical methods are available
leading to so-called “designs”. For sampling the boundaries of the design
space, a full factorial design (FFD), which includes all outer corners of
the design space, can be applied. To sample the area between the
boundary points, for example, Latin Hypercube Designs (LHD) can be
used. Another possible principle is to divide the design space into zones.
Within each of these zones, a random factor combination is then
determined. However, since a uniform and correlation-free coverage of
the design space is not automatically guaranteed, other methods such as
orthogonal designs or space-filling designs should be used (YE,1998).

In the context of the problem statement at hand, see section 3.2,
metamodeling is primarily associated with regression. For this reason,

Input 3
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Fig. 3. Demonstration of an exemplary three-dimensional design space.

the term regression respectively regression model is used in the
following sections.

3.2. Problem statement

The JERICHO security of supply model [18] simulates the target
values LOLP, LOLE and EENS on an hourly basis in dependence on the
conditions in the power grid, see also Fig. 1. From these, the result values
over the 30-year scenarios can be summed up to the LOLE total or the
EENS total. The design space is spanned by the 16 time-resolved input
variables of the simulation model, which determine the conditions of the
power grid at each time step. These include the capacities of the
renewable generators (photovoltaics, onshore/ offshore wind power,
hydropower, other), the capacities of the conventional power plants
(lignite/ hard coal, natural gas and nuclear power plants), the planned
and unplanned unavailability of the conventional power plants, the
import potential from the neighboring countries and the electricity load.
The sizes of the respective minima and maxima of the input values span
the 16-dimensional design space of the regression problem. Table 1
shows the chosen boundaries of the design space in which the regression
model is valid.

A special characteristic of the regression problem at hand is the
target variables, as these have limitations. For example, the LOLP value
can only take values between zero and one. In areas of the design space
with, for example, a significant load overlap, the LOLP value only takes
the value zero. This leads to the fact that there are large areas in the
design space in which the target values do not change. A problem arises
in the generation of training data for the artificial neural network. A
valuable method for selecting a training data set for complex, non-linear
simulation models is Latin Hypercube Sampling described above. If this
method is applied to the problem at hand, it leads to many selected
factor combinations being taken from areas with load overlap. As a
result, the training data set has many data points from areas with no
further information gain. This means that it has a high number of zero
values (approximately 92.0%) for the LOLP value in the training data
set. This complicates the generalization of the regression model and
leads to worse prediction results. The reason for this lies in an under-
representation of areas with high information density. For this reason,
sufficient variance in the training data is important. The higher the se-
curity of supply in a country, the more space these areas occupy in the
design space. As a result, valuable methods for this problem must be
adapted for implementation.
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Table 1

Boundaries of the design space (power [GW] / unavailabilities [%/100]).
Boundaries Hard coal Natural Gas Lignite Oil Nuclear energy Other
Min. 0.0 0.0 0.0 0.8 0.0 2.0
Max. 25.0 45.0 20.0 1.5 5.0 4.0
Boundaries Wind Onshore Wind Offshore Photovoltaic Water Load Import potential
Min. 0.0 0.0 1.0 30.0 0.0
Max. 100.0 15.0 100.0 5.0 100.0 50.0
Boundaries Planned unavailabilities

Hard coal Natural Gas Lignite Nuclear energy

Min. 0.0414 0.0109 0.0352 0.0855
Max. 0.1837 0.1597 0.1241 0.1742

3.3. Data selection

As already explained in section 3.2, the regression problem at hand
poses a particular challenge when generating factor combinations of the
data set for the training/ validation of the regression model. Further-
more, the aim is to use as few factor combinations as possible to reduce
the simulation respectively training time while maintaining the highest
possible prediction quality simultaneously. To avoid too many factor
combinations from areas of low information destiny, the factor combi-
nations of the designs are filtered based on information available before
the simulation. The filter criterion used for classification must therefore
be able to distinguish the areas with relevant information from those
with less relevant information. To avoid additional computational
effort, the filter criterion must also be applicable without additional
information from the simulation model. Since settings in the design
space where the capacities of the power plants are sufficient to cover the
electricity demand will always lead to a LOLP of zero, only settings
where an energy supply shortfall is present are highly relevance. As thus
it is proposed to use the load coverage ratio (LCR) for this purpose.The
LCR is calculated on the basis of the input values of the simulation model
using the capacities of conventional generators (P..) considering the
planned and unplanned unavailability (p) as well as the electricity
production of renewable generators (P;.), the import potential of the
neighboring countries (Pjmp ) and the current load applied (Pjoaq) ac-
cording to Eq. (1).

ZL] (Pce,i'(l _pi)) + Z?:l (P,—e,i) + PI"’P'
Pload

LCR = (@]

In the following Fig. 4, the filtering principle is exemplified for a
three-dimensional problem using an FFD (red) and an LHD (blue). The
left schematic illustration of the design space shows the unfiltered case
and the right schematic illustration shows the filtered case.

For the most efficient sampling of the relevant regions of the design
space, the design is composed of two designs. First, a filtered fractional
factorial design (F-FFD) with 2000 factor combinations is created to
sample some information from the boundaries of the design space as a

random selection of outer corners of a filtered full-factorial design. To
ensure that the training data also contains a small proportion of infor-
mation from areas of the design space with less relevant information, 10
% of the F-FFD is selected without an energy supply shortfall. A com-
plete full-factorial design was not used, because this would increase the
simulation time for the design too much even with filtering for a 16-
dimensional problem (21 factor combination). This is then combined
with a filtered random distribution (FRD) in the second step. For FRD,
random factor combinations (= input data sets) are first determined
until a desired number of input data sets with energy supply shortfall
have been found. Subsequently, the filtered randomly generated distri-
bution of the input data sets in the design space is evaluated. The
Pearson correlation r is used for this purpose. This factor is a dimen-
sionless measure of covariance that can take values between —1 and 1.
The Pearson correlation, unlike the covariance, does not depend on a
measurement scale and is therefore universally comparable. If this takes
the value zero, then there is no linear relationship between the location
of the input data sets in the design space. If, on the other hand, the value
approaches an extreme point (+1), then the relationship increases in a
positive respectively negative way. This optimization process is repeated
until a design is found whose distribution could not be improved 1000
times. An improvement is achieved when the Pearson coefficient is
closer to zero. Fig. 5 illustrates this approach.

In the following scatter plot matrix, Fig. 6, the relationships between
the individual features are shown graphically using the example of an
FRD test plan with 6000 factor combinations. The filtering by the clas-
sification works, as can be seen in the point clouds in the figure.

The number of possible factor combinations decreases towards the
boundaries of the design space so that the probability of obtaining a
factor combination in this area decreases in the case of random gener-
ation. As a consequence, fewer factor combinations with a low load
coverage ratio are found in the FRD, see Fig. 7. Therefore in addition to
the above procedure, an advanced filtered random distribution (AFRD)
is considered. In this approach, the factor combinations are uniformly
distributed in the energy supply shortfall area. This means that the load
coverage ratio is for example divided into 10 zones and the desired

Input 3

Input 3

Fig. 4. Schematic illustration of filtering (three-dimensional problem).
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number of factor combinations is distributed equally across these zones.
In the case of a design with 4000 factor combinations, 400 factor com-
binations would be randomly determined in each area. The advantage of
this zoning of the filtering is that there is also a uniform distribution over
the load coverage ratio. With FRD designs, on the other hand, a large
part of the results lie in the area of a low energy supply shortfall. An
example of the percentage distribution over the load coverage ratio of an
FRD and an AFRD design in the region between 0.6 and 1.0 can be seen
in Fig. 7.

3.4. Training of the artificial neural network

When complex non-linear relationships are considered, ANN from
the field of deep learning, a sub-area of ML, are often used, as they are
known to provide powerful and universal approximations [20]. In
analogy to the human brain, ANNs are composed of so-called neurons,
which are arranged in layers between the inputs and outputs. ANNs

consist of different layers of neurons, but at least one input and one
output layer. All layers between these two are referred to as hidden
layers. Each neuron in a layer is connected to all neurons in the next
layer. The strength of this connection can be described by so-called
weights. The neurons receive and process the input data by deter-
mining weighted sums using activation functions. In an iterative
training process, the initially randomly determined unknowns of the
neurons are adjusted to minimize a previously defined error function.
This requires data with corresponding input and output values (super-
vised learning). The iterative training process is continued until a cri-
terion is reached. This could be, for example, a previously defined
accuracy, the maximum number of iterations (so-called epochs) or a
defined difference of the accuracy improvement over a certain number
of iterations.

The hyperparameters of the artificial neural network are optimized
using a random search algorithm. This optimizes the number of hidden
layers and the number of neurons. The optimization is stopped when 20
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Fig. 6. Scatter plot matrix (FRD with 6000 factor combinations).

subsequent training runs have not led to any improvement. The evalu-
ation is carried out using validation data independent of the training
process and the mean square error is used as the evaluation criterion. For
this purpose, a random permutation of 10 % is taken from the training
data set as validation data. During the training process, the weights and
bias values of the ANN are adjusted based on the training data using a
limited memory Broyden-Fletcher-Goldfarb-Shanno optimizer and the
mean square error is also used as an evaluation criterion. The hyper-
parameter optimization procedure already detects regression models
that have an overfitting, i.e. a decreasing prediction error in the training
data and an increasing or high prediction error in the independent
validation data. This includes an early stop if the evaluation criterion
does not improve over a certain number of epochs. Furthermore, an
increase indiscriminately in the number of neurons and hidden layers

does not automatically guarantee a higher generalization capability of
an ANN and can also encourage overfitting [21]. For this reason, the
upper limits of the hyperparameter optimization were set low with a
maximum of 5 hidden layers and 50 neurons. The number of neurons in
the input and output layer are defined by the number of features or
target variables. In this work two target variables (LOLP/EENS value)
are relevant and one ANN is trained for each target variable.

4. Description of relevant data and scenarios

We compare scenarios with different situations in terms of security of
electricity supply to validate the accuracy of the trained regression
model. For this, we take the current power plant park of Germany and
manipulate capacities to retrieve hypothetical power plant park
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scenarios. The scenarios used are:

(1) Uncertainty scenario: Consists of an artificially composed power
plant park, which can lead to frequent supply uncertainties

(2) Base case: Power plant park as of November 2022 (BNetzA, 2022)

(3) Nuclear phase-out: Phase out of all remaining nuclear power
plants in Germany as happened in April 2023

(4) Nuclear phase-out and additional absence of reserve capacities:
In addition to case (2), reserve capacities that are not partici-
pating in the market but can be activated in case of a supply
shortage are no longer available.

In the following, the underlying data is described.

4.1. Power plant park

The power plant capacities of the scenarios are displayed in Fig. 8.
Compared to the base scenario (scenario (1)), the total conventional
power plant capacities in the other scenarios are ~4 GW lower for
scenario (2) and ~12 GW for scenario (3). This affects nuclear power
plant capacities as well as lignite, hard coal and natural gas capacities.
The installed capacities of the renewable energy plants are constant in
all scenarios.

4.2. Time series data
Hourly time series data for 30 weather years is used for the proba-
bilistic assessment of security of electricity supply. This comprises

weather-dependent uncertainties influencing electricity load, renewable
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electricity generation and import potentials for electricity from neigh-
boring countries. Distributions of the values are shown in Fig. 9.

5. Results and discussion

The results of this research are presented and discussed below. Sec-
tion 5.1 analyzes the required number of factor combinations of the
training data and compares the two types of filtering using a sensitivity
analysis. Following this, the prediction quality of the regression models
is determined in section 5.2 based on independent test data. Finally,
section 5.3 evaluates the time reduction compared to the native
simulation.

In addition to the prediction quality, the time required to create the
regression model is decisive for assessing the usefulness of the regression
model. This includes the creation time for the design of the input data
sets, the simulation time for the generation of the training data with the
original JERICHO security of supply model and the training/prediction
time with the regression model. The first step is therefore to investigate
how many factor combinations are required for an acceptable prediction
in order to keep the simulation time to a minimum. At the same time, it
is being investigated whether additional filtering via areas of load
coverage ratio (FRD/ AFRD) has a positive influence. Subsequently, the
prediction quality is presented in more detail for the individual test
scenarios on the basis of the best regression model.

To measure the quality of the prediction for the target values of the
probabilistic simulation model (LOLP/ EENS), the coefficient of deter-
mination R? is initially used as a dimensionless criterion, which repre-
sents a well-comparable and problem-independent criterion [22]. It is
also very suitable for the limited data available (e.g. 0 values) and offers
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Fig. 8. Installed conventional capacities in Germany according to scenarios.
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Fig. 9. Boxplots of input data used in the probabilistic simulation model. Displayed are 8760 hourly values for 30 weather years each for electricity load, renewable

electricity generation and electricity import potentials.

good comparability between scenarios with different absolute values.
Furthermore, the absolute error (AE) and the absolute percentage error
(APE) are used for evaluation. In addition, the prediction quality is
evaluated on the basis of the total values of the target variables over the
respective scenario (30 weather years) or all scenarios together.
Therefore, the LOLE/ EENS values are summed up and subsequently
referred to as LOLE total/ EENS total. With the exception of Fig. 10,
around 262.800 test points (per scenario; = 8.760 h/a x 30 a) to
1.051.200 test points (across all scenarios) are used.

5.1. Time reduction for generating the simulation results

In the following, the validation data are used to evaluate the required
number of factor combinations, since these are available in practice
without further simulation effort. For both types of filtering (FRD/
AFRD), five designs each with factor combinations between 2500 and
6000 were considered. Due to random processes during training and
optimization of ANNs, e.g. initialization of weights, etc., the prediction
quality varies in individual training or optimization runs. For this
reason, twenty regression models were optimized per design. The co-
efficient of determination is used as the basis for assessing the quality of
the prediction. The results for the LOLP value are shown in a box plot in
Fig. 10. For each design, the coefficients of determination, which were
determined using the validation data (10 % of the design plan), are
shown in the box plot for the 20 optimization runs.

As can be seen in Fig. 10, as the number of factor combinations in-
creases, the prediction quality of the validation data increases.
Furthermore, the range between minimum and maximum prediction
quality decreases, so that with an increasing number of factor combi-
nations, the result becomes also more robust to the random factors in

ANN training. Here, designs with 4000 factor combinations or more can
achieve high prediction quality on the validation data with a coefficient
of determination above 0.9999. The designs with 6000 factor combi-
nations achieve a coefficient of determination close to 0.9999 even with
the statistical outliers. When comparing the two filtering types (FRD/
AFRD), it can be concluded that the median, mean and robustness of
optimization (interquartile range) are better in AFRD filtering than in
FRD filtering. Only in the results of the design with 3000 factor com-
binations this cannot be observed.

For a reliable evaluation of the prediction quality, independent test
data are required, i.e. data which were not used for the determination of
the weights or to optimize the hyperparameters. In the following, the
coefficient of determination for the LOLP value of the 20 optimization
runs is considered across all test scenarios (1.051.200 data points each).
Analogous to the validation data, an increase in the prediction quality
and the robustness of the optimization can be observed with an
increasing number of factor combinations, so that only the relevant
range between 4000 and 6000 factor combinations is shown in Fig. 11.

With this low-resolution sensitivity analysis, the exact minimum
number of factor combinations cannot be determined, but it can be
stated that well-trained regression models are possible from 4000 factor
combinations. A further increase of the number of factor combinations
mainly serves the robustness of the training and reduces the number of
optimization runs. From 4000 factor combinations, the added value is
significantly reduced for a further increase of 1000 factor combinations,
so that this added value must be compared to the constant increase in
simulation time for 1000 additional factor combinations (see also Sec-
tion 5.2/5.3).
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5.2. Prediction quality on the scenarios

In this chapter detailed prediction results are presented based on the
individual test scenarios on only one selected design. Since the simula-
tion time only increases by about 2 min for another 1000 factor com-
binations (see Section 5.3), a design with 6000 factor combinations (and
AFRD design) is used for robustness of the optimization and prediction
quality (see Section 5.1). Fig. 12 shows the coefficient of determination
of the LOLP value for the different test scenarios for twenty optimization
runs each.

As shown in the figure above, the median coefficient of determina-
tion for the test scenarios is between 0.9470 (outlier) and 0.9999. The
regression models perform differently in the test scenarios. In the two
test scenarios (uncertainty scenario /no nuclear no reserve) with poorer
security of supply rating, very high coefficients of determination be-
tween 0.9994 and 0.9999 are achieved. In these scenarios, the target
values cover a large range of the value range (e.g. LOLP 0-1). For sce-
narios with a very good security of supply assessment, i.e. with low
absolute LOLP values, the prediction quality of the regression models
decreases. In these scenarios, for example, only LOLP values close to the
lower limit are reached. The median coefficient of determination for
these scenarios is 0.9855 and 0.9983 respectively. With maximum
values of up to 0.9999, these scenarios also achieve high values for the
coefficient of determination. This fluctuation in prediction quality for
the base scenario and no nuclear scenario can also explain the outliers in
the coefficient of determination across all scenarios, see Fig. 11. The
results in Figs. 10 and 11 were generated using the same regression
models (AFRD 6000), but they are not identical as the coefficient of
determination was determined once over all test scenarios and once for

the individual test scenarios each.

To further evaluate the prediction quality, the absolute error (AE)
and the absolute percentage error (APE) are now considered. Due to the
high number of zero values of the target variable (LOLP), the prediction
quality is considered using the sum values of the scenarios. Fig. 13 shows
the results of the AE for the total LOLE values for the AFRD design with
6000 factor combinations for the twenty optimization runs of each
scenario. The median AE for the scenarios with low absolute LOLP
values is around 23 s (base scenario) and around 48 seconds (no nu-
clear). In contrast, the median AE for scenarios with higher absolute
LOLP values is around 9 minutes (no nuclear & no reserve) and around
10.5 hours (uncertainty scenario).

To additionally consider the APE, this is shown in Fig. 14 analo-
gously for the AFRD design with 6000 factor combinations.

This illustrates that the median APE is lower for scenarios with high
absolute LOLE/ AE values, e.g. around 0.7% for the uncertainty scenario
and 1.2% for the scenario no nuclear & no reserve scenario. The same
applies to scenarios with low LOLP/AE values. Here, median APE values
of around 21.4% are achieved in the base scenario and around 4.4% in
the no nuclear scenario. These increased APE values must be compared
with the corresponding AE values of 22.9 resp. 48.1 s over a period of 30
years.

To demonstrate the best possible prediction quality, the best
regression model is selected from the 20 optimization runs for the LOLP
and EENS. The selection is based on the prediction quality of the vali-
dation data, as this information is directly available. The highest coef-
ficient of determination for the LOLP value is 0.99996 and for the EENS
value 0.99999 on the validation data. The results of these regression
models are shown in Fig. 15 in a prediction/observation plot including
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APE for all scenarios. In areas close to the zero values (fourth decimal
place), APEs greater than 100% also occur; the APE axis was limited for
the purpose of visualization.

The best regression models achieve a coefficient of determination of
0.9999 for the LOLP value and 0.9998 for the EENS value on test data
across all scenarios. The APE value is 0.5 % for both the LOLE value and
the total value of the EENS across all scenarios. This figure also shows
that high APE values only occur at low LOLP/ EENS values. The coef-
ficient of determination (R?) for the LOLP/ EENS value as well as the AE
and APE value of the total values (LOLE total /EENS total) of the indi-
vidual scenarios can be found in Table 2.

As the above results have shown, outliers rarely occur in artificial
neural network optimization with robust training data. However, inde-
pendent test data should also be available in later practice for the
identification of outliers. The simulation of whole scenarios is not
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Table 2

prediction quality on test data (R%, AE and APE) of the best regression models
each.

scenario LOLP LOLE total EENS EENS total
R? AE[h]  APE R? AE APE
[%] [MWh] [%]
uncertainty 0.9999 7.4934 0.5 0.9998 32,277 0.5
scenario
base scenario 0.9877 0.0003 1.1 0.9269 30 14.3
no nuclear 0.9993 0.0048 1.6 0.9583 399 17.6
no nuclear & no 0.9998 0.1491 1.2 0.9920 25,510 11.1
reserve
all scenarios 0.9999 7.6476 0.5 0.9998 58,216 0.5
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necessary here. A selection of factor combinations from the scenarios to
be considered later in the energy supply shortfall area is recommended.
A number of 1000 factor combinations is sufficient if they have been
evaluated using the methodology presented in section 3.3. This means
that in an interactive process, random factor combinations from the test
scenarios with energy supply shortfall are evaluated based on a good
distribution in the design space. After a defined number of iterations
without improvement, the search can be stopped and the test data set
can be used to identify outliers.

5.3. Evaluation of time-saving through metamodeling

In addition to the prediction quality, the time required to generate
the simulation results via the regression modeling method is crucial for
evaluating the method for energy research. For the evaluation, the time
for the design with the most factor combinations and strongest filtering
type (AFRD 6000) is taken as a basis in the following. Here, the time for
the generation of the design of the input data sets, the simulation time of
the design and the test data (1000 data sets) with the original JERICHO
security of supply model, the training/ optimization time for the two
regression models (LOLP/ EENS), as well as the prediction time per
scenario, has to be considered.

The time required for the individual steps of the regression modeling
can be taken from Table 3.

For one scenario with 16 features, the required time is already
reduced from 8 h to about 35 min or by 92.7 %. Due to the fact that a
regression model is able to predict all scenarios within the validity limits
of the regression model, the time to generate the results for each addi-
tional scenario increases only by the prediction time, see Fig. 16.

6. Conclusion & outlook

The results of this work have shown that a direct prediction of the
output values of probabilistic simulation models for the analysis of the
security of supply with electricity is possible by using artificial neural
networks and the method of regression modeling. Thereby, a reasonable
prediction quality can be achieved with a significant reduction of the
needed time for in-depth analyses. This method is capable of performing
in-depth analyses with a very large number of scenarios for probabilistic
security of electricity supply assessments in a reasonable amount of
time. However, this work also shows that regression modeling requires
solutions specifically adapted to the problem. If the target variables in
the regression modeling problem are limited (here between 0 and 1), it
leads to the fact that there are large areas in the design space in which
the target variables do not change. An excessively high percentage of
data points from areas with low information destiny in the training data
makes it difficult to generalize the regression model. For this reason, a
method for efficiently scanning the areas of the design space with a high
information density via classification is of a high importance. Further-
more, the results also show the importance of test data independent of
training for identifying outliers in training. Although these outliers
rarely occur in validated designs with sufficient factor combinations,
they could not be completely excluded. Thus, independent test data is of
great importance not only in research but also in subsequent
applications.

The best regression models with the finally selected design achieved

Table 3

Time for the individual steps of regression modeling.
regression modeling steps Time [min]
design generation (best choice of about 1000 designs) 5.0
simulation time (6.000 + 1.000 = 7.000 factor combinations) 12.8
training time (2 ANN for LOLP and EENS; one optimization) 17.8
prediction time (LOLP, LOLE and EENS for 1 scenario) <0.01
overall time 35.6
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an absolute percentage error of 0.5% for the Loss of Load Expectation
total and Expected Energy Not Severed total over all independent
testscenarios. Larger absolute percentage errors only occur in areas of
the target variables with very low absolute values, which only have a
minor impact on the overall assessment of the security of electricity
supply. This applies to Lost of Load Probability values in the range of a
few seconds and the corresponding Expected Energy Not Severed values.
In the scenario with the worst prediction quality, the percentage abso-
lute error for the Lost of Load Probability total is 1.6% and the Expected
Energy Not Severed total is 17.6%. However, the absolute error in
relation to the 30-year period with an annual electricity consumption of
around 500 TWh is very low for the Lost of Load Probability total at
around 17 s and the Expected Energy Not Severed total at 399 MWh. The
simulation time of one scenario with 16 features on a high-performance
computing cluster is 8 h. With the presented method of regression
modeling, only about 35 min are necessary for the design creation, the
simulation of the training data and for the training of the regression
model. Following the prediction for the interesting target values of one
scenario with a defined power plant constellation and 30 years with
different weather conditions requires with the regression model only a
few milliseconds. The time benefit increases with each scenario to be
considered since regression models can be trained to predict any sce-
nario within the limits applicable to the regression model. In-depth
analysis or optimization, which requires results from a large number
of scenarios, now becomes possible through regression modeling. The
prediction quality can benefit from designs created according to the
principle presented with a higher number of factor combinations. Due to
the high time reduction, various measures are conceivable to increase
the prediction quality while at the same time increasing the time
required in a neglectable way. One option is to increase the amount of
training data. This can make it easier for the artificial neural networksto
recognize patterns in previously underrepresented areas. Therefore it is
important to make use of the procedure presented when creating the
design. In addition, individual regression models could be created for
different dimensions of the regression problem. For example, the
regression problem is reduced from 16 to 14 dimensions for some sce-
narios without nuclear energy. A regression model specially trained for
14 dimensions could achieve a better fit in this area of the design space.
Alternatively, it is possible to increase the prediction quality by creating
several regression models for different value ranges of the target vari-
ables. All this could also benefit the predictive quality of the target
variables for example in a small range of values.

Further research can investigate and improve the methodological
approach further. A further reduction of the time to create the regression
model can be achieved by a stronger reduction of the required factor
combinations. Here, the simulation time for generating the training data
is reduced as well as the training time, which also reduces the optimi-
zation time of the hyperparameters. This could be implemented, for
example, by reducing the mapped design space. Regression models
could be generated, which only represent a narrow part of the design
space around the planned scenarios. Furthermore, the methodology
could also benefit from active learning or a reduction of dimensionality
(e.g. blending of influencing variables). The foregoing could also make
other approximation methods interesting for the method, which in
contrast to artificial neural networks have difficulties with high di-
mensions and high data volumes (e.g. gaussian process regression). In
addition, as well as a comparison of different approximation methods
using different security of supply assessment models still needs to be
carried out to develop a best practice approach for assessing the security
of supply with electricity. The probabilistic simulation model used in
this work to assess the security of electricity supply is based on the
principle of recursive convolution to calculate distribution functions of
the available secured feed-in capacities of the power plant park. In
future works, the methodological approach should be applied to other
approaches for evaluating the security of electricity supply assessment
and adapted to the specific requirements. These other approaches
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Fig. 16. Time required for the analysis of security of the supply with electricity with the original JERICHO model and with the new ANN metamodel approach.

include, for example, optimization models for power plant deployment
planning, which must be coupled with a Monte Carlo simulation.
However, such approaches fulfill the current requirements for the Eu-
ropean security of supply assessment and are even more computation-
ally intensive. Successful integration of machine learning in these
approaches can significantly improve the optimization results through
greater depth of analysis. Another research field that arises from the
application of regression modeling is a deep analysis method developed
specifically for the security of supply assessment with electricity. Due to
the possibility to generate the results of a large number of scenarios in a
short time, complex optimizations of the power plant park, for example
in terms of ecology, economy and security of supply, are now also
possible.
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