http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Towards the Application of Operational Design Domain Based Scene Generation for Artificial Intelligence Training in Railway Automation The project “Rail Automation with Artificial Intelligence for Detection of Exceptional Situations” (RailAIxs) received funding in the mFUND conveyor line by the German Federal Ministry for Digital and Transport under the funding code 19FS2031A-D.
Mersmann, Till (Corresponding author)RWTH* ; Betz, Friedrich (Corresponding author) ; Eichenbaum, Julian (Corresponding author) ; Hampel, Fabian Oliver (Corresponding author)RWTH* ; Klamt, Simon (Corresponding author)RWTH* ; Otten, Yannick (Corresponding author) ; Scholl, Ingrid (Corresponding author) ; Schindler, Christian (Corresponding author)RWTH*
In
2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC) : 24-27 Sept. 2024 ; conference location: Edmonton, AB, Canada / publisher: IEEE, Seiten/Artikel-Nr: 3181-3188
2024 & 2025
Konferenz/Event:IEEE 27. International Conference on Intelligent Transportation Systems
, Edmonton, AB , Canada , ITSC 2024 , 2024-09-24 - 2024-09-27
Impressum[Piscataway, NJ] : IEEE
Umfang3181-3188
ISBN979-8-3315-0592-9, 979-8-3315-0593-6, 9798331505929, 9798331505936
Date Added to IEEE Xplore: 20 March 2025
Online
DOI: 10.1109/ITSC58415.2024.10919732
10.1109/ITSC58415.2024.10919732
Einrichtungen
- Lehrstuhl und Institut für Schienenfahrzeuge (414210)
Projekte
- BMDV 19FS2031A - Verbundvorhaben: Entwicklung und Erprobung einer KI-basierten Umfelderfassung im Gleisbereich für fahrerlosen Schienenverkehr - RailAIxs -; Teilvorhaben: Rheinisch-Westfälische Technische Hochschule Aachen (19FS2031A) (19FS2031A)
Inhaltliche Beschreibung (Schlagwörter)
Artificial Intelligence (frei) ; Automation (frei) ; Machine Vision (frei) ; Rail Transportation (frei) ; Safety (frei) ; Solid modeling (frei) ; Synthetic Data (frei) ; Training (frei)
Dokumenttyp
Contribution to a book/Contribution to a conference proceedings (Review Article)
Format
online, print
Sprache
English
Anmerkung
Peer reviewed article
Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-105001672479
Interne Identnummern
RWTH-2025-04127
Datensatz-ID: 1010473
Beteiligte Länder
Germany
