; ; ; ;
In
Medical image computing and computer assisted intervention – MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019 : proceedings / Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan (eds.). - Part 1, Seiten/Artikel-Nr: 631-639
2019
Weitere Reihe: Springer eBooks
Online
DOI: 10.1007/978-3-030-32239-7_70
Einrichtungen
Dokumenttyp
Contribution to a book/Contribution to a conference proceedings
Format
online, print
Sprache
English
Anmerkung
Peer reviewed article
Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-85075632285
WOS Core Collection: WOS:000548734200070
Interne Identnummern
RWTH-2023-11985
Datensatz-ID: 975328
Beteiligte Länder
Austria, Germany
Dissertation / PhD Thesis
Interpretable image features and stain-independent machine learning methods for automated analysis of renal histopathology
Aachen : RWTH Aachen University 1 Online-Ressource : Illustrationen (2023) [10.18154/RWTH-2023-08404] = Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2023, Kumulative Dissertation
Files
BibTeX |
EndNote:
XML,
Text |
RIS