http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A method for inferring signal strength modifiers by conditional invertible neural networks
Farkas, Máté Zoltán (Corresponding author)RWTH* ; Diekmann, Svenja (Corresponding author)RWTH* ; Eich, Niclas (Corresponding author)RWTH* ; Erdmann, Martin (Corresponding author)RWTH* ; CMS Collaboration (Collaboration author)
In
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023) : Norfolk, VA, USA, May 8-12, 2023 / R. De Vita, X. Espinal, P. Laycock and O. Shadura (eds.), Seiten/Artikel-Nr: 09001, [1]-7
2024
Konferenz/Event:26. International Conference on Computing in High Energy and Nuclear Physics
, Norfolk, VA , USA , CHEP 2023 , 2023-05-08 - 2023-05-12
ImpressumLes Ulis : EDP Sciences
Umfang09001, [1]-7
ReiheThe European physical journal. Web of Conferences ; 295
Online
DOI: 10.1051/epjconf/202429509001
10.1051/epjconf/202429509001
DOI: 10.18154/RWTH-2024-10548
URL: https://publications.rwth-aachen.de/record/996357/files/996357.pdf
Einrichtungen
- Lehr- und Forschungsgebiet Experimentalphysik (Hochenergiephysik) (133320)
- Fachgruppe Physik (130000)
- III. Physikalisches Institut A (133005)
- Lehr- und Forschungsgebiet Theoretische Teilchenphysik (136520)
Thematische Einordnung (Klassifikation)
DDC: 530
OpenAccess:
PDF
Dokumenttyp
Contribution to a book/Contribution to a conference proceedings
Format
online
Sprache
English
Anmerkung
Peer reviewed article
Externe Identnummern
WOS Core Collection: WOS:001244151902052
SCOPUS: SCOPUS:2-s2.0-85212174191
Interne Identnummern
RWTH-2024-10548
Datensatz-ID: 996357
Beteiligte Länder
Germany
