h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI

; ; ;

In
SIAM ASA journal on uncertainty quantification 13(1), Seiten/Artikel-Nr.:90-113

ImpressumPhiladelphia, Pa. : SIAM

ISSN2166-2525

Online
DOI: 10.1137/23M161433X

DOI: 10.18154/RWTH-2025-04436
URL: http://publications.rwth-aachen.de/record/1010924/files/1010924.pdf

Einrichtungen

  1. Lehrstuhl für Mathematics for Uncertainty Quantification (118110)
  2. Fachgruppe Mathematik (110000)


Thematische Einordnung (Klassifikation)
DDC: 510

OpenAccess:
Download fulltext PDF

Dokumenttyp
Journal Article

Format
online

Sprache
English

Anmerkung
Peer reviewed article

Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-85215551527
WOS Core Collection: WOS:001450056300004

Interne Identnummern
RWTH-2025-04436
Datensatz-ID: 1010924

Beteiligte Länder
Germany, Saudi Arabia

 GO


Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection

QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Articles
Faculty of Mathematics, Computer Science and Natural Sciences (Fac.1) > Department of Mathematics
Publication server / Open Access
Public records
Publications database
110000
118110

 Record created 2025-05-06, last modified 2025-07-31


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)