h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Graph neural networks for prediction of fuel ignition quality

; ; ; ; ;

VerantwortlichkeitsangabeArtur M. Schweidtmann, Jan G. Rittig, Andrea König, Martin Grohe, Alexander Mitsos, Manuel Dahmen

Konferenz/Event:AIChE Annual Meeting, Applications of Data Science to Molecules and Materials Session , online , 2020-11-18 - 2020-11-18

ImpressumAachen

Umfang1 Online-Ressource (1 video file)

Reihe[AVT research video] ; [5]

ProduzentAVT, Aachener Verfahrenstechnik, RWTH Aachen University

Produktionsjahr2020

Spieldauer001655

Dateitypmp4 video file

KodierungsformatMP4

Dateigröße63,3 MB

AuflösungHD

Veröffentlicht auf dem Publikationsserver der RWTH Aachen University

Online
DOI: 10.18154/RWTH-2020-10689
URL: http://publications.rwth-aachen.de/record/805041/files/805041.mp4

Einrichtungen

  1. Lehrstuhl für Systemverfahrenstechnik (416710)
  2. Lehrstuhl für Informatik 7 (Logik und Theorie diskreter Systeme)(N.N.) (122110)
  3. Fachgruppe Informatik (120000)
  4. JARA-ENERGY (080011)
  5. Lehrstuhl für Informatik 7 (Logik und Theorie diskreter Systeme) (122910)


OpenAccess:
Volltext herunterladen MP4
(zusätzliche Dateien)

Dokumenttyp
Multimedia (Video)/Conference Presentation

Format
data medium, online

Sprache
English

Interne Identnummern
RWTH-2020-10689
Datensatz-ID: 805041

Beteiligte Länder
Germany

 GO


Related:

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Poster  ;  ;  ;  ;  ;  ;
Graph Neural Networks for Prediction of Fuel Ignition Quality
Fuel Science - From Production to Propulsion, Aachen onlineAachen online, Germany, 23 Jun 2020 - 25 Jun 20202020-06-232020-06-25  GO   Download fulltextHomepage of event BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;
Graph Neural Networks for Prediction of Fuel Ignition Quality
Energy & fuels 34(9), 11395-11407 () [10.1021/acs.energyfuels.0c01533]  GO BibTeX | EndNote: XML, Text | RIS


OpenAccess

QR Code for this record

The record appears in these collections:
Dokumenttypen > Andere Dokumenttypen > Multimedia > Video
Dokumenttypen > Präsentationen > Konferenzvorträge
Fakultät für Mathematik, Informatik und Naturwissenschaften (Fak.1) > Fachgruppe Informatik
Fakultät für Maschinenwesen (Fak.4)
Publikationsserver / Open Access
Zentrale und weitere Einrichtungen
Öffentliche Einträge
Publikationsdatenbank
120000
080011
416710
122910
122110

 Datensatz erzeugt am 2020-11-02, letzte Änderung am 2023-12-13


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)