h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

A virtual calibration chamber for cone penetration test based on deep-learning approaches

; ; ; ;

In
Journal of rock mechanics and geotechnical engineering : JRMGE 16(12), Seiten/Artikel-Nr.:5179-5192

ImpressumWechselnde Erscheinungsorte : Elsevier

ISSN1674-7755

Online
DOI: 10.1016/j.jrmge.2024.10.004

DOI: 10.18154/RWTH-2025-03623
URL: https://publications.rwth-aachen.de/record/1009694/files/1009694.pdf

Einrichtungen

  1. Lehrstuhl für Geotechnik im Bauwesen und Institut für Geomechanik und Untergrundtechnik (314310)


Thematische Einordnung (Klassifikation)
DDC: 690

OpenAccess:
Download fulltext PDF

Dokumenttyp
Journal Article

Format
online

Sprache
English

Anmerkung
Peer reviewed article

Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-85208503269
WOS Core Collection: WOS:001381289100001

Interne Identnummern
RWTH-2025-03623
Datensatz-ID: 1009694

Beteiligte Länder
Germany, Peoples R China

 GO


Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection

QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Articles
Faculty of Civil Engineering (Fac.3)
Publication server / Open Access
Public records
Publications database
314310

 Record created 2025-04-08, last modified 2025-04-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)