h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Discovery of fatigue strength models via feature engineering and automated eXplainable machine learning applied to the welded transverse stiffener

;

In
International journal of fatigue 203, Seiten/Artikel-Nr.:109324

ImpressumOxford : Elsevier

Umfang[1]-23

ISSN1879-3452

Received 27 June 2025, Revised 5 October 2025, Accepted 6 October 2025, Available online 16 October 2025

Online
DOI: 10.1016/j.ijfatigue.2025.109324

DOI: 10.18154/RWTH-2025-09933
URL: https://publications.rwth-aachen.de/record/1022304/files/1022304.pdf

Einrichtungen

  1. Lehrstuhl für Stahl- und Leichtmetallbau und Institut für Stahlbau (311710)


Thematische Einordnung (Klassifikation)
DDC: 600

OpenAccess:
Download fulltext PDF

Dokumenttyp
Journal Article

Format
online, print

Sprache
English

Anmerkung
Peer reviewed article

Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-105020962708
WOS Core Collection: WOS:001607377600001

Interne Identnummern
RWTH-2025-09933
Datensatz-ID: 1022304

Beteiligte Länder
Germany

Lizenzstatus der Zeitschrift

 GO


Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection

QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Articles
Faculty of Civil Engineering (Fac.3)
Publication server / Open Access
Public records
Publication Charges
Publications database
311710

TypAmountVATCurrencyShareStatusCost centre
Hybrid-OA2575.00180.25EUR96.26 %(DEAL)021000-311710
Other100.007.00EUR3.74 %(DEAL)021000-311710
Sum2675.00187.25EUR   
Total2862.25     
 Record created 2025-11-24, last modified 2025-11-29


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)