h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Global fine resolution mapping of ozone metrics through explainable machine learning

; ; ; ; ; ; ;

In
Abstracts & presentations / EGU General Assembly 2021, Seiten/Artikel-Nr: EGU21-7596, 1 Seite

Konferenz/Event:EGU General Assembly 2021 , online , vEGU21 , 2021-04-19 - 2021-04-30

ImpressumGöttingen : Copernicus Gesellschaft mbH

UmfangEGU21-7596, 1 Seite

Online
DOI: 10.5194/egusphere-egu21-7596

DOI: 10.18154/RWTH-CONV-246944
URL: https://publications.rwth-aachen.de/record/842789/files/842789.pdf
URL: https://egusphere.net/conferences/EGU21/index.html

Einrichtungen

  1. Lehrstuhl für Methoden der Modellbasierten Entwicklung in den Computergestützten Ingenieurwissenschaften (422410)
  2. Aachen Institute for Advanced Study in Computational Engineering Science (080003)


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenHomepage of book

Dokumenttyp
Abstract/Contribution to a conference proceedings

Format
online

Sprache
English

Interne Identnummern
RWTH-CONV-246944
Datensatz-ID: 842789

Beteiligte Länder
Germany

 GO


Creative Commons Attribution CC BY 4.0 ; OpenAccess

QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Dokumenttypen > Präsentationen > Zusammenfassungen
Fakultät für Maschinenwesen (Fak.4)
Publikationsserver / Open Access
Zentrale und weitere Einrichtungen
Öffentliche Einträge
Publikationsdatenbank
080003
422410

 Datensatz erzeugt am 2022-03-14, letzte Änderung am 2024-10-23


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenHomepage of book
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)