h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Satelite remote sensing data and artificial intelligence systems to identify, measure and class mine waste piles

; ; ; ;

In
[living planet symposium 2022, lps2022, 2022-05-23 - 2022-05-27, Bonn, Germany]

Konferenz/Event:Living Planet Symposium 2022 , Bonn , Germany , lps 2022 , 2022-05-23 - 2022-05-27

Online
URL: https://publications.rwth-aachen.de/record/849628/files/849628.pdf

Einrichtungen

  1. Lehrstuhl für Nachhaltige Rohstoffgewinnung und Institut für Rohstoffingenieurwesen (511110)
  2. Fachgruppe Rohstoffe und Entsorgungstechnik (510000)


Restricted:
Download fulltext PDF

Dokumenttyp
Contribution to a conference proceedings

Format
media combination, data medium

Sprache
English

Anmerkung
Peer review status of article unknown

Interne Identnummern
RWTH-2022-06930
Datensatz-ID: 849628

 GO


QR Code for this record

The record appears in these collections:
Document types > Events > Contributions to a conference proceedings
Faculty of Georesources and Materials Engineering (Fac.5) > Division of Mineral Resources and Raw Materials Engineering
Documents in print
Public records
511110
510000

 Record created 2022-07-12, last modified 2024-06-21


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)