h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Self-Calibrating Loss Models for Real-Time Monitoring of Power Modules Based on Artificial Neural Networks

; ; ;

In
2022 IEEE Energy Conversion Congress and Exposition (ECCE) : 9-13 Oct. 2022 / publisher: IEEE, Seiten/Artikel-Nr: 8 Seiten

Konferenz/Event:14. IEEE Energy Conversion Congress and Exposition , Detroit, MI , USA , ECCE , 2022-10-09 - 2022-10-13

ImpressumPiscataway, NJ : IEEE

Umfang8 Seiten

ISBN978-1-7281-9387-8, 978-1-7281-9388-5, 978-1-72819-387-8, 978-1-72819-388-5

Online
DOI: 10.1109/ECCE50734.2022.9947691


Einrichtungen

  1. Institut für Stromrichtertechnik und Elektrische Antriebe (614500)
  2. Lehrstuhl für Stromrichtertechnik und Elektrische Antriebe (614510)



Dokumenttyp
Contribution to a book/Contribution to a conference proceedings

Format
online, print

Sprache
English

Anmerkung
Peer reviewed article

Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-85144027652
WOS Core Collection: WOS:001080548002029

Interne Identnummern
RWTH-2023-01056
Datensatz-ID: 889242

Beteiligte Länder
Germany

 GO


QR Code for this record

The record appears in these collections:
Document types > Events > Contributions to a conference proceedings
Document types > Books > Contributions to a book
Faculty of Electrical Engineering and Information Technology (Fac.6)
Public records
Publications database
614500
614510

 Record created 2023-01-30, last modified 2025-10-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)