h1

h2

h3

h4

h5
h6

AIM.imaging.CKD

AI-augmented, Multiscale Image-based Diagnostics of Chronic Kidney Disease

Grant period2021-05-01 - 2026-04-30
Funding bodyEuropean Union
Call numberERC-2020-COG
Grant number101001791
IdentifierG:(EU-Grant)101001791

Note: Chronic kidney disease (CKD) is a major global health problem, affecting 10% of the world population and projected to be the fifth major cause of death in 2040. CKD patients are one of the most complex and multi-morbid populations in internal medicine while at the same time having the least translational randomized clinical trials and limited treatment options. One of the major reasons for this is the lack of reproducible approaches specifically reflecting intrarenal pathological processes and disease activity. The overall goal of AIM.imaging.CKD is to specifically address this unmet need by developing, validating and integrating image-based diagnostics for CKD. The integration of broad interdisciplinary expertise will enable to develop a multiscale approach from nano- to micro- to macromorphological and molecular diagnostics. Specifically, the project will develop augmented full-spectrum ultrastructural (“nano”) and histological (“micro”) renal biopsy diagnostics, focusing on reproducible, quantitative nephropathological analyses and prediction of clinically relevant outcome parameters. The project will also explore macro-morphological and molecular imaging in CKD, focusing on translatable non-invasive approaches. The central feature will be the development of advanced, scalable and modular image analyses models utilizing artificial intelligence (AI), particularly machine and deep learning. Using preclinical testing and clinical validation, the main emphasis will be on accelerated or, whenever possible, direct implementation into the clinical practice. The integration of the above-mentioned tools and technologies provides a comprehensive multiscale and multiplex approach for improved diagnostics of CKD patients and facilitate future randomized clinical trials. At each level, and even more so when integrated, the results are expected to augment and transform image-based diagnostics of kidney diseases, and thereby lead to improved patient management and outcome.
   

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Analysis of nanomedicine primary tumor vs. metastasis targeting using clinical-stage core-crosslinked polymeric micelles
Cell reports 44(8), 116086 () [10.1016/j.celrep.2025.116086]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;
Development of a Mouse Model of Uremic Cardiomyopathy: Investigating the Impact of Chronic Kidney Disease on Cardiac Function and Signaling Pathway
The FASEB journal 39(10), e70639 () [10.1096/fj.202500281R]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article (Review Article)  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts
The journal of clinical investigation 134(18), e170246 () [10.1172/JCI170246]  GO DBCoverage BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Ecologically sustainable benchmarking of AI models for histopathology
npj digital medicine 7, 378 () [10.1038/s41746-024-01397-x]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Lineage tracing reveals transient phenotypic adaptation of tubular cells during acute kidney injury
iScience 27(3), 109255 () [10.1016/j.isci.2024.109255]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;
Extending the landscape of omics technologies by pathomics
npj Systems biology and applications 9, 38 () [10.1038/s41540-023-00301-9]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Next-Generation Morphometry for pathomics-data mining in histopathology
Nature Communications 14, 470 () [10.1038/s41467-023-36173-0]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning
Gastric cancer 26(2), 264-274 () [10.1007/s10120-022-01347-0]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Adversarial attacks and adversarial robustness in computational pathology
Nature Communications 13, 5711 () [10.1038/s41467-022-33266-0]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Deep learning for the detection of microsatellite instability from histology images in colorectal cancer : A systematic literature review
ImmunoInformatics 3/4, 100008 () [10.1016/j.immuno.2021.100008]  GO OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Record created 2021-10-10, last modified 2023-02-15



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)