http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
    Machine-learning-based control of perturbed and heated channel flows
     Rüttgers, Mario (Corresponding author)RWTH* ;  Waldmann, MoritzRWTH* ;  Schröder, WolfgangRWTH* ;  Lintermann, AndreasRWTH*
    
    In
 High performance computing : ISC High Performance Digital 2021 International Workshops, Frankfurt am Main, Germany, June 24 - July 2, 2021 : revised selected papers / Heike Jagode, Hartwig Anzt, Hatem Ltaief, Piotr Luszczek (eds.), Seiten/Artikel-Nr: 7-22
    
    
    2021
    	
    
    Konferenz/Event:International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics and Solid Mechanics: Simulation and Analysis CFDML2021
     
    
     
    ImpressumCham, Switzerland : Springer
	
    Umfang7-22
	
    	
    ISBN978-3-030-90538-5, 978-3-030-90539-2, 978-3-030-90540-8
    ReiheLecture notes in computer science ; 12761, Theoretical Computer Science and General Issues
    
    
    
  
    
    
    
    
    
    
    
    
    
    
    
     
    
    
    Online
DOI: 10.1007/978-3-030-90539-2_1
10.1007/978-3-030-90539-2_1
    Einrichtungen
- Lehrstuhl für Strömungslehre und Aerodynamisches Institut (415110)
- Aachen Institute for Advanced Study in Computational Engineering Science (080003)
- JARA-CSD (Center for Simulation and Data Science) (080031)
    
    
    
    
    
  
      		
     
    
 
   
 
   Dokumenttyp
Contribution to a book/Contribution to a conference proceedings
   
   Format
online, print
    
   Sprache
English
   
   Anmerkung
 Peer reviewed article
   Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-85119835123
WOS Core Collection: WOS:000763168300001
   Interne Identnummern
RWTH-2022-00175 
Datensatz-ID: 837914  
   Beteiligte Länder 
Germany
    
    