h1

h2

h3

h4

h5
h6
http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png

Prediction of Typhoon Track and Intensity Using a Generative Adversarial Network With Observational and Meteorological Data

; ; ;

In
IEEE access : practical research, open solutions 10, Seiten/Artikel-Nr.:48434-48446

ImpressumNew York, NY : IEEE

ISSN2169-3536

Online
DOI: 10.1109/ACCESS.2022.3172301

DOI: 10.18154/RWTH-2022-05400
URL: https://publications.rwth-aachen.de/record/847507/files/847507.pdf

Einrichtungen

  1. Aachen Institute for Advanced Study in Computational Engineering Science (080003)
  2. JARA-CSD (Center for Simulation and Data Science) (080031)
  3. Lehrstuhl für Strömungslehre und Aerodynamisches Institut (415110)


Thematische Einordnung (Klassifikation)
DDC: 621.3

OpenAccess:
Download fulltext PDF

Dokumenttyp
Journal Article

Format
online

Sprache
English

Anmerkung
Peer reviewed article

Externe Identnummern
SCOPUS: SCOPUS:2-s2.0-85129585724
WOS Core Collection: WOS:000793810600001

Interne Identnummern
RWTH-2022-05400
Datensatz-ID: 847507

Beteiligte Länder
Germany, South Korea

Lizenzstatus der Zeitschrift

 GO


Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection

QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Articles
Faculty of Mechanical Engineering (Fac.4)
Publication server / Open Access
Central and Other Institutions
Public records
Publications database
080003
080031
415110

 Record created 2022-05-30, last modified 2025-10-14


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)